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ESSENTIAL STEPS FOR LATENT GROWTH 
CURVE MODELING IN TAIWANESE PANEL 

STUDY
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ABSTRACT

 The increasing availability of longitudinal panel datasets in 
Taiwan, such as the Taiwan Youth Project and the Panel Study of 
Family Dynamics, provides researchers with the tools to explore 
complex questions about human development using advanced 
longitudinal methods. One such statistical approach is Latent Growth 
Curve Modeling (LGCM), a technique rooted in Structural Equation 
Modeling that allows for the modeling of initial status and rates of 
change over time while considering inter-individual differences in 
trajectories. In this study, we examine recent research titled “De-
velopmental Trajectory of Depressive Symptoms from Adolescence 
to Early Adulthood,” which employed LGCM to investigate the 
influence of parenting styles and self-esteem on depressive symptom 
development among Taiwanese adolescents. We provide essential 
knowledge of LGCM, including its capacity to integrate time-invariant 
and time-varying co-variates, its ability to specify linear and non-linear 
growth patterns, and its advanced variations such as piecewise and 
growth mixture models. This study highlights the potential of LGCM 
as a powerful analytical tool for leveraging Taiwan’s rich longitudinal 
datasets. By introducing the methodology and its advanced variations, 
we aim to encourage researchers to utilize LGCM to explore 
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developmental trajectories, contributing to a deeper understanding of 
individual growth patterns in the Taiwanese unique context.
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Introduction
The examination of individual change within the context of macrostructural 

dynamics constitutes a central focus in the study of human behavior. From a life 
course perspective, different periods of the lifespan and the transitions between 
these periods profoundly impact individual behavior. Previous researchers have 
focused on studying the effects of specific life events and markers of these 
transitions to understand the processes of socialization and accommodation. 
However, the increasing uncertainty and diversity in contemporary society 
have made it challenging to predict human behavior trends, underscoring the 
importance of studying the variability and sensitivity of these time points across 
the lifespan (Shanahan, 2000). This focus on individual change is widespread 
in interdisciplinary research areas such as applied psychology, sociology, and 
education science, and the study of growth rates in biology (Barnes et al., 2000; 
Dmitriew, 2011). 

This shift in theoretical perspectives has been accompanied by innovations 
in methodology. First, a significant shift in data collection methods has been 
witnessed. Longitudinal research has emerged as the preferred approach in 
empirical studies, replacing traditional cross-sectional research. The maturation 
and availability of longitudinal panel studies, which observe and collect 
information form the same groups of individuals over time, have proliferated 
since the 1980s (Mayer, 2009). This progress has enabled empirical studies to 
delve into the contextual time factors influencing human lives and track personal 
trajectories across the lifetime. Longitudinal panel data provide a clear temporal 
order between variables through different waves of data collection. Additionally, 
they allow researchers to collect pertinent variables from the same group of 
observations multiple times, contributing to the ability to predict future trends 
and capture the effects of causal changes during an individual’s life course 
(Wu, 2008). Compared to cross-sectional studies, which obtain independent and 
dependent variables simultaneously, this time-lag characteristic of longitudinal 
studies makes it more feasible to control for common method biases, such as 
measurement context effects (Podsakoff et al., 2003).

The second aspect of methodological development is the rapid and fruitful 
innovation in statistical modeling. The key analytical objective in longitudinal 
panel data is to capture both individual and group-level changes simultaneously. 
However, traditional analytical approaches, such as repeated-measures ANOVA 
or multiple regression, can only focus on mean differences or treat individual 
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variability as error variance, failing to account for the heterogeneity in growth 
trajectories across individuals (Duncan & Duncan, 2004). Latent Growth Curve 
Modeling (LGCM), rooted in the framework of Structural Equation Modeling 
(SEM), offers a powerful and flexible approach to analyzing longitudinal 
panel data. By incorporating latent variables that represent individual growth 
trajectories, LGCM enables researchers to model both the initial status and the 
rate of change over time. This approach not only captures the average growth 
patterns within a population but also accounts for individual differences in these 
trajectories, providing insights into the factors that influence developmental 
processes.

Over the past two decades, several longitudinal panel datasets in Taiwan 
have emerged as significant resources for exploring individual development 
from a life course perspective. For instance, the Taiwan Youth Project (TYP) 
and Taiwan Education Panel Survey (TEPS) both target school-age children and 
teenagers, making them optimal for analyzing students’ mental and learning 
performance development across time and its associated factors. The Panel 
Study of Family Dynamics (PSFD), targeting teenagers and young adults, 
can analyze the relationship between family dynamics and the transition from 
adolescence to adulthood. 

Owing to the availability of these datasets, researchers in Taiwan are now 
equipped to explore more complex research questions and conduct sophisticated 
longitu-dinal analyses. A recent study, "Developmental Trajectory of De-
pressive Symptoms from Adolescence to Early Adulthood," investigated the 
long-term effects of par-enting styles and self-esteem on depressive symptom 
development among Taiwanese adolescents. In this article, we aim to introduce 
the fundamental knowledge of LGCM for understanding the study, providing a 
possible pathway for further researchers to utilize these valuable datasets and 
contribute to interdisciplinary knowledge of human behavior studies.

Introduction to Structural Equation Modeling (SEM)
Latent Growth Curve Modeling (LGCM) provides a powerful technique for 

analyzing longitudinal data, deeply rooted in the Structural Equation Modeling 
(SEM) framework. SEM is a versatile statistical approach used to examine 
complex relationships among observed and latent variables within a single point 



77
當代教育研究季刊　第三十二卷　第四期，2024年 12月，頁 073-099

Contemporary Educational Research Quarterly Vol. 32, No. 4

in time (Duncan, 2014). An illustrated example of the SEM is shown in Figure 1. 
In SEM causal diagrams, latent constructs are usually enclosed in circles, while 
observed variables are en-closed in squares. SEM encompasses measurement 
models, which define how observed variables relate to latent constructs, and 
structural models, which specify the relationships among these latent constructs 
(Singer & Willett, 2003). There are two different measurement models: The 
X-measurement model and the Y-measurement model. The distinction between 
these two models stems from the nature of the latent constructs and variables 
measured, while the researchers should consider two conditions: exogeneity and 
endogeneity. 

Figure 1 

Example for SEM

As in Figure 1, the values of two latent constructs – parental support and 
harsh parenting – are entirely determined outside the hypothesized causal 
system, where this type of latent construct or variable is called an exogenous 
variable. In the SEM, exogeneity indicates that a construct or variable can 
only act as a predictor within the causal system. This is presented by variables 
on the left in Figure 1. For an exogenous variable, researchers would apply 
the X-measurement model to obtain the parameters. Consider the following 
X-measurement model:

 

Figure1 

 

 

Figure 2 
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where the X is a vector of the observed indicators. In our example in Figure 1, 
there are four indicators, so the vector X is {X1i, X2i, X3i, X4i}, where i indicates 
the number of observations. The parameter vector τx reflects the mean of the 
corresponding indicator Xpi. The latent constructs are denoted by the vector ξ, 
and in this case, there are two constructs in this case: ξ1i and ξ2i. The matrix Λx 
consists of the factor loadings, which rescale the indicators. This allows the 
indicators to be measured on different scales, making a single construct that can 
simultaneously influence several indicators. The matrix Λx has k columns, where 
k indicates the number of the latent constructs. Each column consists of λ x

pk and 
0's. In this case, the matrix Λx is:
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The last term, δ, is an error vector that contains the measurement error of 
each observation. In general, the distribution of errors is assumed to have a zero 
mean, similar to the distribution of residual scores in a regression model. The 
variance of δpi is denoted by the variance-covariance matrix Θδ:

It should be noted that although δ can be seen as the measurement error, 
it is better considered as part of the indicator Xpi that does not depend on the 
corresponding construct ξki (Singer & Willett, 2003).

The Y-measurement model pertains to the endogenous variables, which 
are always the outcome variables in the SEM. Any variable pointed to by an 
arrow in the causal diagram is considered to have endogeneity. In Figure 1, the 
endogenous variables are located on the right. The equation of the Y-measurement 
model is very similar to the X-measurement model: 
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where 𝒀𝒀, 𝝉𝝉𝒚𝒚, and 𝚲𝚲𝒚𝒚 are the vector of the observed indicators, the mean vector, and the factor 
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where 𝑞𝑞 indicates the number of latent construct of Y.  

In addition to the measurement models, SEM utilizes the structural model to depict the 
relationship between latent constructs. As for the case in Figure 1, two exogenous constructs –
parental support (𝜉𝜉1𝑝𝑝) and harsh parenting (𝜉𝜉2𝑝𝑝) – influence the endogenous variable, self-esteem 
(𝜂𝜂1𝑝𝑝), where the relationship is denoted by 𝛾𝛾11 and 𝛾𝛾12. The relationship of the two endogenous 
constructs– denoted by 𝛽𝛽21 – can also be observed, in which self-esteem (𝜂𝜂1𝑝𝑝 ) can predict 
depression (𝜂𝜂2𝑝𝑝). Therefore, a pair of simultaneous structural equations can be obtained from the 
relationships: 

𝜂𝜂1𝑝𝑝 = 𝛼𝛼1 + 𝛾𝛾11𝜉𝜉1𝑝𝑝 + 𝛾𝛾12𝜉𝜉2𝑝𝑝 + 𝜍𝜍1𝑝𝑝 
𝜂𝜂2𝑝𝑝 = 𝛼𝛼2 + 𝛽𝛽21𝜂𝜂1𝑝𝑝 + 𝜍𝜍2𝑝𝑝 
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where Y, τy, and Λy are the vector of the observed indicators, the mean vector, 
and the factor loading matrix, respectively. The vector η represents the latent 
constructs, which are self-esteem and depression in our example. The ε is the 
error term of the Y-measurement model. Similar to the X-measurement model, 
the mean of the distribution of ε is zero, and the variance-covariance matrix Θε 
is

where q indicates the number of latent constructs of Y. 

In addition to the measurement models, SEM utilizes the structural model to 
depict the relationship between latent constructs. As for the case in Figure 1, two 
exogenous constructs – parental support (ξ1i) and harsh parenting (ξ2i) – influence 
the endogenous variable, self-esteem (η1i), where the relationship is denoted by 
γ11 and γ12. The relationship of the two endogenous constructs – denoted by β21– 
can also be observed, in which self-esteem (η1i) can predict depression (η2i). 
Therefore, a pair of simultaneous structural equations can be obtained from the 
relationships:

These equations can be written in an abbreviated version:

 In the equations, α1 and α2 are the population means or intercepts of 
two endogenous constructs, while the ς1i and ς2i are the residuals. Detailed 
information and derivation for all the above equations can be found in Duncan 
(2014) and Singer and Willett (2003).
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where 𝑞𝑞 indicates the number of latent construct of Y.  

In addition to the measurement models, SEM utilizes the structural model to depict the 
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(𝜂𝜂1𝑝𝑝), where the relationship is denoted by 𝛾𝛾11 and 𝛾𝛾12. The relationship of the two endogenous 
constructs– denoted by 𝛽𝛽21 – can also be observed, in which self-esteem (𝜂𝜂1𝑝𝑝 ) can predict 
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    In the equations, 𝛼𝛼1  and 𝛼𝛼2  are the population means or intercepts of two endogenous 
constructs, while the 𝜍𝜍1𝑖𝑖 and 𝜍𝜍2𝑖𝑖 are the residuals.  
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The purpose of introducing the LGCM is to model repeated-measured data or panel data. 
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heterogeneity within individuals and between individuals, including random coefficient modeling, 
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In contrast, LGCM allows for the specification of a measurement model and assumes that 
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Introduction to Latent Growth Curve Modeling (LGCM)
The purpose of introducing the LGCM is to model repeated-measured data 

or panel data. Traditionally, researchers use repeated measures ANOVA and its 
variations to study longitudinal change (Huck & McLean, 1975). Notably, these 
approaches do not consider the distinctions among individual subjects; they 
assume that all individuals share one single trajectory. The distinctions could 
facilitate a better understanding of the mechanism of change, which should be 
included in a comprehensive study. Therefore, numerous analytical approaches 
have been developed to explore heterogeneity within individuals and between 
individuals, including random coefficient modeling, multilevel modeling, and 
LGCM (Box, 1950; Dmitriew, 2011; Duncan & Duncan, 2009; Gee, 2014; 
Podsakoff et al., 2003; Rogosa & Willett, 1985; Singer & Willett, 2003). The 
basic concept of these methods is to utilize random effects to accommodate the 
inter-individual variability. 

Nevertheless, in recent studies, most approaches fail to investigate multiple 
repeatedly measured variables simultaneously (Curran et al., 2010). This can be 
illustrated by the example in Figure 1, where self-esteem is measured using two 
different indicators: positive and negative self-esteem. Suppose a new research 
question focuses on the change in self-esteem measured at several time points. 
In that case, most methods may require creating a single response variable by 
integrating the indicators first and then putting the variable into the model. In 
other words, the measurement model is separated from the main model, so the 
measurement error is assumed to be free in the main model, as in multilevel 
modeling (Singer & Willett, 2003). 

In contrast, LGCM allows for the specification of a measurement model and 
assumes that the factor structure of the created latent construct is time-invariant 
(Newsom, 2015). In LGCM, the measurement error is estimated simultaneously, 
providing statistical power advantages. Consequently, the statistical power 
advantages and flexibility of LGCM make it one of the preferred modeling 
options for panel studies (Curran, 2000).

In addition to the built-in measurement model, there are several benefits to 
applying LGCM. LGCM builds on the foundation of SEM by introducing latent 
variables that represent growth trajectories over time, such as the initial status 
(intercept) and rate of change (slope). Due to its relationship with SEM, LGCM 
inherits the merits of SEM, including the ability to model longitudinal data with 



81
當代教育研究季刊　第三十二卷　第四期，2024年 12月，頁 073-099

Contemporary Educational Research Quarterly Vol. 32, No. 4

complex causal hypotheses and build latent constructs. Compared to multilevel 
modeling, which is also widely applied in recent studies, the most important 
characteristic could be its ability to treat variables or model parameters as both 
predictors and outcomes simultaneously in the same model (Preacher, 2008). For 
the example above, the change in self-esteem can be the outcome variable that 
researchers are interested in, while it can also be a predictor of depression at the 
same time, as hypothesized in Figure 1. This advantage is deeply rooted in its 
nature as a variety of SEM, where the relationships of numerous variables can 
be depicted in a path diagram, and mediators can be included in a single model.

 Another benefit of applying LGCM is its flexibility in choosing the scale 
of time, which relates to the decision of factor loadings. In the framework of 
multilevel modeling, the scale of time can also be decided by researchers, where 
time is considered a variable with known values (Singer & Willett, 2003). In 
contrast, in LGCM, time scaling can be either a known variable or an unknown 
parameter that could be estimated by the algorithm. This unique feature was 
developed by Meredith and Tisak (1984, 1990) and extended by McArdle (1988), 
where the model is referred to as the “unspecified latent growth curve model,” 
linear spline model, or latent basis model. This approach is basically a data-
driven method for generating a non-linear form in LGCM by transforming the 
metric of time (Bollen & Curran, 2006; Newsom, 2015; Preacher, 2008). Further 
details will be discussed later. 

Although LGCM possesses distinctive benefits, the disparity between 
LGCM and multilevel modeling is not markedly substantial (Chou et al., 1998; 
Preacher, 2008). From a mathematical perspective, Multilevel modeling, also 
referred to as hierarchical modeling, exhibits expressions identical to LGCM. 
The main distinction between these methods lies in the assumption regarding the 
variance inherent in the repeatedly measured variable, which will be discussed 
later. In fact, two-level multilevel growth curve modeling can be viewed as a 
specific form of LGCM (Singer & Willett, 2003). 

Consider a random variable Yij that represents a set of repeated measures for 
individual i at time j, where the random variable is depression in our example, 
as shown in Figure 2. The metric of time, denoted by Tj, consists of the observed 
time indicators at each time point, where Tj={t1,t2,...,tj}. Based on the interest 
in the relationship between time and the response variable, we can write an 
equation in the following form:
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where π0i represents the initial status of depression, also called the intercept 
factor or random intercept; π1i is the slope factor, or random slope, that describes 
the rate of linear change in depression over the two-time points. This expression 
of the relationship is the standard level-1 equation in multilevel modeling, which 
also satisfies the standard form of the Y-measurement model in LGCM. Recall 
the equation of the Y-measurement model in the previous section, where τy is 
fixed to a zero vector here. We will obtain the equation:

where Λy is the matrix of factor loadings, and η is the latent growth factor. If we 
let

then we can derive the exact same equation in LGCM for multilevel modeling.

Figure 2 

Example for unconditional LGCM

in self-esteem can be the outcome variable that researchers are interested in, while it can also be a 
predictor of depression at the same time, as hypothesized in Figure 1. This advantage is deeply 
rooted in its nature as a variety of SEM, where the relationships of numerous variables can be 
depicted in a path diagram, and mediators can be included in a single model. 

 Another benefit of applying LGCM is its flexibility in choosing the scale of time, which 
relates to the decision of factor loadings. In the framework of multilevel modeling, the scale of 
time can also be decided by researchers, where time is considered a variable with known values 
(Singer & Willett, 2003). In contrast, in LGCM, time scaling can be either a known variable or an 
unknown parameter that could be estimated by the algorithm. This unique feature was developed 
by Meredith and Tisak (1984, 1990) and extended by McArdle (1988), where the model is referred 
to as the “unspecified latent growth curve model,” linear spline model, or latent basis model. This 
approach is basically a data-driven method for generating a non-linear form in LGCM by 
transforming the metric of time (Bollen & Curran, 2006; Newsom, 2015; Preacher, 2008). Further 
details will be discussed later.  

Although LGCM possesses distinctive benefits, the disparity between LGCM and multilevel 
modeling is not markedly substantial (Chou et al., 1998; Preacher, 2008). From a mathematical 
perspective, LGCM and multilevel modeling, also referred to as hierarchical modeling, exhibit 
identical expressions. The main distinction between these methods lies in the assumption regarding 
the variance inherent in the repeatedly measured variable, which will be discussed later. In fact, 
two-level multilevel growth curve modeling can be viewed as a specific form of LGCM (Singer 
& Willett, 2003).  

Consider a random variable 𝑌𝑌𝑖𝑖𝑖𝑖 that represents a set of repeated measures for individual 𝑖𝑖 at 
time 𝑖𝑖, where the random variable is depression in our example, as shown in Figure 2. The metric 
of time, denoted by 𝑇𝑇𝑖𝑖, consists of the observed time indicators at each time point, where 𝑇𝑇𝑖𝑖 =
ሼ𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑖𝑖ሽ. Based on the interest in the relationship between time and the response variable, 
we can write an equation in the following form: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜋𝜋0𝑖𝑖 + 𝜋𝜋1𝑖𝑖൫𝑇𝑇𝑖𝑖൯ + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝜋𝜋0𝑖𝑖  represents the initial status of depression, also called the intercept factor or random 
intercept; 𝜋𝜋1𝑖𝑖  is the slope factor, or random slope, that describes the rate of linear change in 
depression over the two-time points. This expression of the relationship is the standard level-1 
equation in multilevel modeling, which also satisfies the standard form of the Y-measurement 
model in LGCM. Recall the equation of the Y-measurement model in the previous section, where 
𝜏𝜏𝑦𝑦 is fixed to a zero vector here. We will obtain the equation: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝚲𝚲𝒚𝒚𝜼𝜼 + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝚲𝚲𝒚𝒚 is the matrix of factor loadings, and 𝜼𝜼 is the latent growth factors. If we let 

𝚲𝚲𝒚𝒚 = ሾ1 𝑇𝑇𝑖𝑖ሿ𝑎𝑎𝑎𝑎𝑎𝑎𝜼𝜼 = ቂ𝜋𝜋0𝑖𝑖𝜋𝜋1𝑖𝑖ቃ, 

then we can derive the exact same equation in LGCM for multilevel modeling.  

 

in self-esteem can be the outcome variable that researchers are interested in, while it can also be a 
predictor of depression at the same time, as hypothesized in Figure 1. This advantage is deeply 
rooted in its nature as a variety of SEM, where the relationships of numerous variables can be 
depicted in a path diagram, and mediators can be included in a single model. 

 Another benefit of applying LGCM is its flexibility in choosing the scale of time, which 
relates to the decision of factor loadings. In the framework of multilevel modeling, the scale of 
time can also be decided by researchers, where time is considered a variable with known values 
(Singer & Willett, 2003). In contrast, in LGCM, time scaling can be either a known variable or an 
unknown parameter that could be estimated by the algorithm. This unique feature was developed 
by Meredith and Tisak (1984, 1990) and extended by McArdle (1988), where the model is referred 
to as the “unspecified latent growth curve model,” linear spline model, or latent basis model. This 
approach is basically a data-driven method for generating a non-linear form in LGCM by 
transforming the metric of time (Bollen & Curran, 2006; Newsom, 2015; Preacher, 2008). Further 
details will be discussed later.  

Although LGCM possesses distinctive benefits, the disparity between LGCM and multilevel 
modeling is not markedly substantial (Chou et al., 1998; Preacher, 2008). From a mathematical 
perspective, LGCM and multilevel modeling, also referred to as hierarchical modeling, exhibit 
identical expressions. The main distinction between these methods lies in the assumption regarding 
the variance inherent in the repeatedly measured variable, which will be discussed later. In fact, 
two-level multilevel growth curve modeling can be viewed as a specific form of LGCM (Singer 
& Willett, 2003).  

Consider a random variable 𝑌𝑌𝑖𝑖𝑖𝑖 that represents a set of repeated measures for individual 𝑖𝑖 at 
time 𝑖𝑖, where the random variable is depression in our example, as shown in Figure 2. The metric 
of time, denoted by 𝑇𝑇𝑖𝑖, consists of the observed time indicators at each time point, where 𝑇𝑇𝑖𝑖 =
ሼ𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑖𝑖ሽ. Based on the interest in the relationship between time and the response variable, 
we can write an equation in the following form: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜋𝜋0𝑖𝑖 + 𝜋𝜋1𝑖𝑖൫𝑇𝑇𝑖𝑖൯ + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝜋𝜋0𝑖𝑖  represents the initial status of depression, also called the intercept factor or random 
intercept; 𝜋𝜋1𝑖𝑖  is the slope factor, or random slope, that describes the rate of linear change in 
depression over the two-time points. This expression of the relationship is the standard level-1 
equation in multilevel modeling, which also satisfies the standard form of the Y-measurement 
model in LGCM. Recall the equation of the Y-measurement model in the previous section, where 
𝜏𝜏𝑦𝑦 is fixed to a zero vector here. We will obtain the equation: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝚲𝚲𝒚𝒚𝜼𝜼 + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝚲𝚲𝒚𝒚 is the matrix of factor loadings, and 𝜼𝜼 is the latent growth factors. If we let 

𝚲𝚲𝒚𝒚 = ሾ1 𝑇𝑇𝑖𝑖ሿ𝑎𝑎𝑎𝑎𝑎𝑎𝜼𝜼 = ቂ𝜋𝜋0𝑖𝑖𝜋𝜋1𝑖𝑖ቃ, 

then we can derive the exact same equation in LGCM for multilevel modeling.  

 

 

Figure1 

 

 

Figure 2 

 

in self-esteem can be the outcome variable that researchers are interested in, while it can also be a 
predictor of depression at the same time, as hypothesized in Figure 1. This advantage is deeply 
rooted in its nature as a variety of SEM, where the relationships of numerous variables can be 
depicted in a path diagram, and mediators can be included in a single model. 

 Another benefit of applying LGCM is its flexibility in choosing the scale of time, which 
relates to the decision of factor loadings. In the framework of multilevel modeling, the scale of 
time can also be decided by researchers, where time is considered a variable with known values 
(Singer & Willett, 2003). In contrast, in LGCM, time scaling can be either a known variable or an 
unknown parameter that could be estimated by the algorithm. This unique feature was developed 
by Meredith and Tisak (1984, 1990) and extended by McArdle (1988), where the model is referred 
to as the “unspecified latent growth curve model,” linear spline model, or latent basis model. This 
approach is basically a data-driven method for generating a non-linear form in LGCM by 
transforming the metric of time (Bollen & Curran, 2006; Newsom, 2015; Preacher, 2008). Further 
details will be discussed later.  

Although LGCM possesses distinctive benefits, the disparity between LGCM and multilevel 
modeling is not markedly substantial (Chou et al., 1998; Preacher, 2008). From a mathematical 
perspective, LGCM and multilevel modeling, also referred to as hierarchical modeling, exhibit 
identical expressions. The main distinction between these methods lies in the assumption regarding 
the variance inherent in the repeatedly measured variable, which will be discussed later. In fact, 
two-level multilevel growth curve modeling can be viewed as a specific form of LGCM (Singer 
& Willett, 2003).  

Consider a random variable 𝑌𝑌𝑖𝑖𝑖𝑖 that represents a set of repeated measures for individual 𝑖𝑖 at 
time 𝑖𝑖, where the random variable is depression in our example, as shown in Figure 2. The metric 
of time, denoted by 𝑇𝑇𝑖𝑖, consists of the observed time indicators at each time point, where 𝑇𝑇𝑖𝑖 =
ሼ𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑖𝑖ሽ. Based on the interest in the relationship between time and the response variable, 
we can write an equation in the following form: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜋𝜋0𝑖𝑖 + 𝜋𝜋1𝑖𝑖൫𝑇𝑇𝑖𝑖൯ + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝜋𝜋0𝑖𝑖  represents the initial status of depression, also called the intercept factor or random 
intercept; 𝜋𝜋1𝑖𝑖  is the slope factor, or random slope, that describes the rate of linear change in 
depression over the two-time points. This expression of the relationship is the standard level-1 
equation in multilevel modeling, which also satisfies the standard form of the Y-measurement 
model in LGCM. Recall the equation of the Y-measurement model in the previous section, where 
𝜏𝜏𝑦𝑦 is fixed to a zero vector here. We will obtain the equation: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝚲𝚲𝒚𝒚𝜼𝜼 + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝚲𝚲𝒚𝒚 is the matrix of factor loadings, and 𝜼𝜼 is the latent growth factors. If we let 

𝚲𝚲𝒚𝒚 = ሾ1 𝑇𝑇𝑖𝑖ሿ𝑎𝑎𝑎𝑎𝑎𝑎𝜼𝜼 = ቂ𝜋𝜋0𝑖𝑖𝜋𝜋1𝑖𝑖ቃ, 

then we can derive the exact same equation in LGCM for multilevel modeling.  

 

in self-esteem can be the outcome variable that researchers are interested in, while it can also be a 
predictor of depression at the same time, as hypothesized in Figure 1. This advantage is deeply 
rooted in its nature as a variety of SEM, where the relationships of numerous variables can be 
depicted in a path diagram, and mediators can be included in a single model. 

 Another benefit of applying LGCM is its flexibility in choosing the scale of time, which 
relates to the decision of factor loadings. In the framework of multilevel modeling, the scale of 
time can also be decided by researchers, where time is considered a variable with known values 
(Singer & Willett, 2003). In contrast, in LGCM, time scaling can be either a known variable or an 
unknown parameter that could be estimated by the algorithm. This unique feature was developed 
by Meredith and Tisak (1984, 1990) and extended by McArdle (1988), where the model is referred 
to as the “unspecified latent growth curve model,” linear spline model, or latent basis model. This 
approach is basically a data-driven method for generating a non-linear form in LGCM by 
transforming the metric of time (Bollen & Curran, 2006; Newsom, 2015; Preacher, 2008). Further 
details will be discussed later.  

Although LGCM possesses distinctive benefits, the disparity between LGCM and multilevel 
modeling is not markedly substantial (Chou et al., 1998; Preacher, 2008). From a mathematical 
perspective, LGCM and multilevel modeling, also referred to as hierarchical modeling, exhibit 
identical expressions. The main distinction between these methods lies in the assumption regarding 
the variance inherent in the repeatedly measured variable, which will be discussed later. In fact, 
two-level multilevel growth curve modeling can be viewed as a specific form of LGCM (Singer 
& Willett, 2003).  

Consider a random variable 𝑌𝑌𝑖𝑖𝑖𝑖 that represents a set of repeated measures for individual 𝑖𝑖 at 
time 𝑖𝑖, where the random variable is depression in our example, as shown in Figure 2. The metric 
of time, denoted by 𝑇𝑇𝑖𝑖, consists of the observed time indicators at each time point, where 𝑇𝑇𝑖𝑖 =
ሼ𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑖𝑖ሽ. Based on the interest in the relationship between time and the response variable, 
we can write an equation in the following form: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜋𝜋0𝑖𝑖 + 𝜋𝜋1𝑖𝑖൫𝑇𝑇𝑖𝑖൯ + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝜋𝜋0𝑖𝑖  represents the initial status of depression, also called the intercept factor or random 
intercept; 𝜋𝜋1𝑖𝑖  is the slope factor, or random slope, that describes the rate of linear change in 
depression over the two-time points. This expression of the relationship is the standard level-1 
equation in multilevel modeling, which also satisfies the standard form of the Y-measurement 
model in LGCM. Recall the equation of the Y-measurement model in the previous section, where 
𝜏𝜏𝑦𝑦 is fixed to a zero vector here. We will obtain the equation: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝚲𝚲𝒚𝒚𝜼𝜼 + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝚲𝚲𝒚𝒚 is the matrix of factor loadings, and 𝜼𝜼 is the latent growth factors. If we let 

𝚲𝚲𝒚𝒚 = ሾ1 𝑇𝑇𝑖𝑖ሿ𝑎𝑎𝑎𝑎𝑎𝑎𝜼𝜼 = ቂ𝜋𝜋0𝑖𝑖𝜋𝜋1𝑖𝑖ቃ, 

then we can derive the exact same equation in LGCM for multilevel modeling.  

 

in self-esteem can be the outcome variable that researchers are interested in, while it can also be a 
predictor of depression at the same time, as hypothesized in Figure 1. This advantage is deeply 
rooted in its nature as a variety of SEM, where the relationships of numerous variables can be 
depicted in a path diagram, and mediators can be included in a single model. 

 Another benefit of applying LGCM is its flexibility in choosing the scale of time, which 
relates to the decision of factor loadings. In the framework of multilevel modeling, the scale of 
time can also be decided by researchers, where time is considered a variable with known values 
(Singer & Willett, 2003). In contrast, in LGCM, time scaling can be either a known variable or an 
unknown parameter that could be estimated by the algorithm. This unique feature was developed 
by Meredith and Tisak (1984, 1990) and extended by McArdle (1988), where the model is referred 
to as the “unspecified latent growth curve model,” linear spline model, or latent basis model. This 
approach is basically a data-driven method for generating a non-linear form in LGCM by 
transforming the metric of time (Bollen & Curran, 2006; Newsom, 2015; Preacher, 2008). Further 
details will be discussed later.  

Although LGCM possesses distinctive benefits, the disparity between LGCM and multilevel 
modeling is not markedly substantial (Chou et al., 1998; Preacher, 2008). From a mathematical 
perspective, LGCM and multilevel modeling, also referred to as hierarchical modeling, exhibit 
identical expressions. The main distinction between these methods lies in the assumption regarding 
the variance inherent in the repeatedly measured variable, which will be discussed later. In fact, 
two-level multilevel growth curve modeling can be viewed as a specific form of LGCM (Singer 
& Willett, 2003).  

Consider a random variable 𝑌𝑌𝑖𝑖𝑖𝑖 that represents a set of repeated measures for individual 𝑖𝑖 at 
time 𝑖𝑖, where the random variable is depression in our example, as shown in Figure 2. The metric 
of time, denoted by 𝑇𝑇𝑖𝑖, consists of the observed time indicators at each time point, where 𝑇𝑇𝑖𝑖 =
ሼ𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑖𝑖ሽ. Based on the interest in the relationship between time and the response variable, 
we can write an equation in the following form: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜋𝜋0𝑖𝑖 + 𝜋𝜋1𝑖𝑖൫𝑇𝑇𝑖𝑖൯ + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝜋𝜋0𝑖𝑖  represents the initial status of depression, also called the intercept factor or random 
intercept; 𝜋𝜋1𝑖𝑖  is the slope factor, or random slope, that describes the rate of linear change in 
depression over the two-time points. This expression of the relationship is the standard level-1 
equation in multilevel modeling, which also satisfies the standard form of the Y-measurement 
model in LGCM. Recall the equation of the Y-measurement model in the previous section, where 
𝜏𝜏𝑦𝑦 is fixed to a zero vector here. We will obtain the equation: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝚲𝚲𝒚𝒚𝜼𝜼 + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝚲𝚲𝒚𝒚 is the matrix of factor loadings, and 𝜼𝜼 is the latent growth factors. If we let 

𝚲𝚲𝒚𝒚 = ሾ1 𝑇𝑇𝑖𝑖ሿ𝑎𝑎𝑎𝑎𝑎𝑎𝜼𝜼 = ቂ𝜋𝜋0𝑖𝑖𝜋𝜋1𝑖𝑖ቃ, 

then we can derive the exact same equation in LGCM for multilevel modeling.  

 

[      ] [  ]

in self-esteem can be the outcome variable that researchers are interested in, while it can also be a 
predictor of depression at the same time, as hypothesized in Figure 1. This advantage is deeply 
rooted in its nature as a variety of SEM, where the relationships of numerous variables can be 
depicted in a path diagram, and mediators can be included in a single model. 

 Another benefit of applying LGCM is its flexibility in choosing the scale of time, which 
relates to the decision of factor loadings. In the framework of multilevel modeling, the scale of 
time can also be decided by researchers, where time is considered a variable with known values 
(Singer & Willett, 2003). In contrast, in LGCM, time scaling can be either a known variable or an 
unknown parameter that could be estimated by the algorithm. This unique feature was developed 
by Meredith and Tisak (1984, 1990) and extended by McArdle (1988), where the model is referred 
to as the “unspecified latent growth curve model,” linear spline model, or latent basis model. This 
approach is basically a data-driven method for generating a non-linear form in LGCM by 
transforming the metric of time (Bollen & Curran, 2006; Newsom, 2015; Preacher, 2008). Further 
details will be discussed later.  

Although LGCM possesses distinctive benefits, the disparity between LGCM and multilevel 
modeling is not markedly substantial (Chou et al., 1998; Preacher, 2008). From a mathematical 
perspective, LGCM and multilevel modeling, also referred to as hierarchical modeling, exhibit 
identical expressions. The main distinction between these methods lies in the assumption regarding 
the variance inherent in the repeatedly measured variable, which will be discussed later. In fact, 
two-level multilevel growth curve modeling can be viewed as a specific form of LGCM (Singer 
& Willett, 2003).  

Consider a random variable 𝑌𝑌𝑖𝑖𝑖𝑖 that represents a set of repeated measures for individual 𝑖𝑖 at 
time 𝑖𝑖, where the random variable is depression in our example, as shown in Figure 2. The metric 
of time, denoted by 𝑇𝑇𝑖𝑖, consists of the observed time indicators at each time point, where 𝑇𝑇𝑖𝑖 =
ሼ𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑖𝑖ሽ. Based on the interest in the relationship between time and the response variable, 
we can write an equation in the following form: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜋𝜋0𝑖𝑖 + 𝜋𝜋1𝑖𝑖൫𝑇𝑇𝑖𝑖൯ + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝜋𝜋0𝑖𝑖  represents the initial status of depression, also called the intercept factor or random 
intercept; 𝜋𝜋1𝑖𝑖  is the slope factor, or random slope, that describes the rate of linear change in 
depression over the two-time points. This expression of the relationship is the standard level-1 
equation in multilevel modeling, which also satisfies the standard form of the Y-measurement 
model in LGCM. Recall the equation of the Y-measurement model in the previous section, where 
𝜏𝜏𝑦𝑦 is fixed to a zero vector here. We will obtain the equation: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝚲𝚲𝒚𝒚𝜼𝜼 + 𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝚲𝚲𝒚𝒚 is the matrix of factor loadings, and 𝜼𝜼 is the latent growth factors. If we let 

𝚲𝚲𝒚𝒚 = ሾ1 𝑇𝑇𝑖𝑖ሿ𝑎𝑎𝑎𝑎𝑎𝑎𝜼𝜼 = ቂ𝜋𝜋0𝑖𝑖𝜋𝜋1𝑖𝑖ቃ, 

then we can derive the exact same equation in LGCM for multilevel modeling.  

 



83
當代教育研究季刊　第三十二卷　第四期，2024年 12月，頁 073-099

Contemporary Educational Research Quarterly Vol. 32, No. 4

However, the main distinction between the two methods can be probed 
here, which is related to the assumption of the error term εij. In the multilevel 
modeling, the residuals are assumed to follow a normal distribution with a zero 
mean and variance σ 2

ε (i.e., εij~N(0,σ 2
ε)). In contrast, the assumption in LGCM 

is more flexible, where researchers can determine their customized assumption 
of residuals according to the theories related to the measured variables. The 
error term in LGCM can be either homoscedastic or heteroscedastic, and it can 
also be either independent or autocorrelated (Singer & Willett, 2003). This can 
be achieved by adjusting the covariance matrix of errors since the residuals 
are assumed to be normally distributed with mean zero and covariance matrix 
Θε. That is, εij~N(0,Θε). Typically, researchers will assume the residuals are 
heteroscedastic and independent over time (Grimm & Widaman, 2010), where 
the form of the covariance matrix Θε will be defined as:

The presence of zeros in the matrix indicates that the errors are not 
intercorrelated, implying that the residuals are independent between different 
time points. Furthermore, the variances along the diagonal are not identical, 
which suggests the assumption is that residuals are heteroscedastic at distinct 
times. If the variances along the diagonal are identical here, where σ 2

ε1 = σ 2
ε2 = 

... = σ 2
εj = σ 2

ε, it will result in the same assumption as in multilevel modeling. 
Notably, the assumption of error terms in LGCM can always be inspected 
in the path diagram, while researchers must provide the diagram describing 
the causal relationships and theories in their studies (Hancock et al., 2010). 
As for the example in Figure 2, the error term of depression is assumed to be 
heteroscedastic and independent. 

After discussing the error term in the measurement model, another essential 
element in the equation is the vector of the latent growth factors η, where it is 
the intercept and slope factor in Figure 2. The latent growth factors account 
for the trajectories of the repeated measured variable, which is the purpose of 
applying the longitudinal analysis. To obtain the trajectories for each individual, 
consider the following simultaneous equations:
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The presence of zeros in the matrix indicates that the errors are not intercorrelated, implying that 
the residuals are independent between different time points. Furthermore, the variances along the 
diagonal are not identical, which suggests the assumption is that residuals are heteroscedastic at 
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where μπ0 and μπ1 are the mean of intercept and slope factor across all cases. The 
disturbances, ς0i and ς1i, explain how much the specific individual i deviates from 
the average of the population. In particular, the simultaneous equations assume 
that no predictors will influence latent growth factors, so the model is called the 
“unconditional latent growth curve model.” It can be extended to include time-
invariant variables as well, where

These two pairs of simultaneous equations are the form of level-2 equations 
in multilevel modeling. It also satisfies the basic formulation of the structural 
model in SEM:

The latent construct ξ is estimated by fixing the parameters in the 
X-measurement model that δ = [0], τx = [0], and Λx = [1]. Particularly, the 
disturbance vector ς has a covariance matrix Ψ:

The matrix Ψ contains the variance and covariance of the latent growth 
factors, which represents the relationship between these factors. This facilitates 
researchers in querying, as depicted in Figure 2, whether the initial state of 
depression influences its subsequent trajectory or alteration. Other detailed 
information and derivation for the above equations about LGCM can be found 
in Newsom (2015) and Singer and Willett (2003).
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al., 2010). As for the example in Figure 2, the error term of depression is assumed to be 
heteroscedastic and independent.  

After discussing the error term in the measurement model, another essential element in the 
equation is the vector of the latent growth factors 𝜼𝜼, where it is the intercept and slope factor in 
Figure 2. The latent growth factors account for the trajectories of the repeated measured variable, 
which is the purpose of applying the longitudinal analysis. To obtain the trajectories for each 
individual, consider the following simultaneous equations: 

𝜋𝜋0𝑖𝑖 = 𝜇𝜇𝜋𝜋0 + 𝜍𝜍0𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋1𝑖𝑖 = 𝜇𝜇𝜋𝜋1 + 𝜍𝜍1𝑖𝑖 

where 𝜇𝜇𝜋𝜋0 and 𝜇𝜇𝜋𝜋1 are the mean of intercept and slope factor across all cases. The disturbances, 

𝜍𝜍0𝑖𝑖  and 𝜍𝜍1𝑖𝑖 , explain how much the specific individual 𝑖𝑖  deviates from the average of the 
population. In particular, the simultaneous equations assume that no predictors will influence latent 
growth factors, so the model is called the “unconditional latent growth curve model.” It can be 
extended to include time-invariant variables as well, where 

𝜋𝜋0𝑖𝑖 = 𝜇𝜇𝜋𝜋0 + 𝛾𝛾𝜋𝜋0𝑖𝑖𝑋𝑋𝑖𝑖 + 𝜍𝜍0𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋1𝑖𝑖 = 𝜇𝜇𝜋𝜋1 + 𝛾𝛾𝜋𝜋1𝑖𝑖𝑋𝑋𝑖𝑖 + 𝜍𝜍1𝑖𝑖 

     These two pairs of simultaneous equations are the form of level-2 equations in multilevel 
modeling. It also satisfies the basic formulation of the structural model in SEM: 
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         The latent construct 𝚪𝚪 is estimated by fixing the parameters in the X-measurement model that 
𝛿𝛿 = ሾ0ሿ, 𝜏𝜏𝑥𝑥 = ሾ0ሿ, 𝑎𝑎𝑎𝑎𝑎𝑎Λ𝑥𝑥 = ሾ1ሿ. Particularly, the disturbance vector 𝝇𝝇 has a covariance matrix 
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     The matrix 𝚿𝚿  contains the variance and covariance of the latent growth factors, which 
represents the relationship between these factors. This facilitates researchers in querying, as 
depicted in Figure 2, whether the initial state of depression influences its subsequent trajectory or 
alteration.  
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represents the relationship between these factors. This facilitates researchers in querying, as 
depicted in Figure 2, whether the initial state of depression influences its subsequent trajectory or 
alteration.  
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     These two pairs of simultaneous equations are the form of level-2 equations in multilevel 
modeling. It also satisfies the basic formulation of the structural model in SEM: 

𝜼𝜼 = 𝜶𝜶 + 𝚪𝚪𝚪𝚪 + 𝑩𝑩𝜼𝜼 + 𝝇𝝇, 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝜼𝜼 = ቂ𝜋𝜋0𝑖𝑖𝜋𝜋1𝑖𝑖ቃ = ቂ
𝜇𝜇𝜋𝜋0
𝜇𝜇𝜋𝜋1

ቃ + ቂ𝜍𝜍0𝑖𝑖𝜍𝜍1𝑖𝑖ቃ , 𝜶𝜶 = ቂ
𝜇𝜇𝜋𝜋0
𝜇𝜇𝜋𝜋1

ቃ , 𝐁𝐁 = ቂ0 0
0 0ቃ , 𝑎𝑎𝑎𝑎𝑎𝑎 ൞

𝚪𝚪 = ቂ0 0
0 0ቃ 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝚪𝚪 = 
𝛾𝛾𝜋𝜋0𝑖𝑖
𝛾𝛾𝜋𝜋1𝑖𝑖

൨ 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑖𝑖𝑓𝑓ℎ𝑓𝑓𝑎𝑎𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑎𝑎𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒
 

         The latent construct 𝚪𝚪 is estimated by fixing the parameters in the X-measurement model that 
𝛿𝛿 = ሾ0ሿ, 𝜏𝜏𝑥𝑥 = ሾ0ሿ, 𝑎𝑎𝑎𝑎𝑎𝑎Λ𝑥𝑥 = ሾ1ሿ. Particularly, the disturbance vector 𝝇𝝇 has a covariance matrix 
𝚿𝚿: 

𝚿𝚿 = 𝑓𝑓𝑓𝑓𝑐𝑐(𝝇𝝇) = ቈ
𝜎𝜎𝜋𝜋0
2 𝜎𝜎𝜋𝜋0𝜋𝜋1

𝜎𝜎𝜋𝜋1𝜋𝜋0 𝜎𝜎𝜋𝜋1
2  

     The matrix 𝚿𝚿  contains the variance and covariance of the latent growth factors, which 
represents the relationship between these factors. This facilitates researchers in querying, as 
depicted in Figure 2, whether the initial state of depression influences its subsequent trajectory or 
alteration.  

 

Estimating an LGCM 
Data Requirement 

Although there are few strict requirements for the types of data that might be analyzed using 
growth models, several general data characteristics are particularly amenable to these methods. 
LGCM necessitates longitudinal data, meaning data collected at multiple time points from the 

,
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Estimating an LGCM

Data Requirement

Although there are few strict requirements for the types of data that might 
be analyzed using growth models, several general data characteristics are 
particularly amenable to these methods. LGCM necessitates longitudinal data, 
meaning data collected at multiple time points from the same subjects. Typically, 
at least three repeated measures per individual are required to reliably estimate 
growth trajectories (Duncan & Duncan, 2009; Xitao & Xiaotao, 2005), though 
more time points (e.g., five or more) are preferred to enhance the model’s ability 
to detect non-linear patterns (Preacher et al., 2008). An adequate sample size 
is also crucial, though what constitutes “adequate” can vary depending on the 
complexity of the model and the amount of variance explained. While growth 
models have been fitted to small samples, sample sizes of at least 100 are often 
preferred, with the total number of person-by-time observations playing a 
critical role in model estimation and statistical power (Curran et al., 2010; Lei & 
Lomax, 2005). 

Measurement invariance is essential; the same variables must be measured 
in the same way across all time points to ensure observed changes reflect true 
changes in constructs rather than variations in measurement (Hancock et al., 
2010; Preacher, 2008). That is, the meaning of the measurement would not 
change over time (Hancock et al., 2010). LGCM typically assumes continuous 
and normally distributed repeated measures, but alternative estimation methods 
can accommodate non-normally distributed, discrete, or ordinal measures (Lee 
et al., 2018; Mehta et al., 2004; Mehta & West, 2000). Additionally, LGCM can 
handle partially missing data using techniques like Full Information Maximum 
Likelihood (FIML) or multiple imputation, provided the data are missing at 
random (MAR) or missing completely at random (MCAR) (Enders & Bandalos, 
2001). These requirements ensure that researchers can effectively utilize LGCM 
to model individual growth trajectories and explore factors influencing change 
over time.

Unconditional model

An unconditional model in LGCM serves as a critical foundational step 
for both baseline understanding and model comparison (Duncan and Duncan, 
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2009). Baseline understanding is achieved by estimating the initial trajectory of 
the outcome variable without the influence of covariates. This allows researchers 
to grasp the general pattern of change over time and identify key characteristics 
of the growth process, such as the average initial status and the average rate 
of change within the population. By understanding these baseline dynamics, 
researchers can establish a clear picture of the underlying growth structure, 
which is essential for interpreting subsequent analyses.

In terms of model comparison, the unconditional model acts as a benchmark 
against which more complex models are evaluated. By incrementally adding 
covariates or testing alternative growth structures (e.g., quadratic or cubic 
trends), researchers can assess the improvement in model fit (Bollen & Curran, 
2006). This is typically done by applying the chi-squared difference test, details 
of which will be discussed later. Using fit indices such as the Akaike Information 
Criterion (AIC) or the Bayesian Information Criterion (BIC) is also helpful 
in determining whether the added complexity justifies the improvement in fit. 
Comparing these indices across models facilitates a systematic evaluation of 
how well different specifications capture the underlying data patterns and guides 
the selection of the most parsimonious yet explanatory model.

Factor Loadings

Determining factor loadings in LGCM is a critical process, as it significantly 
affects parameter estimations and the subsequent interpretation of underlying 
growth trajectories. The initial step involves deciding on the number of pairs of 
factor loadings, which is closely linked to the number of latent growth factors. 
In general, an LGCM encompasses two primary growth factors: the intercept 
factor, which represents the initial status, and the slope factor, indicative of the 
rate of change. However, this does not necessarily mean there are two pairs of 
factor loadings to be determined. 

There are two reasons for this: the first is related to the nature of the intercept 
factor, and the second concerns the theories or assumptions for the number 
of slope factors. For the first reason, since the intercept factor represents the 
initial status of the response variable, determining the factor loadings for the 
intercept factor is quite intuitive. The intercept factor is a constant value for 
each individual over time, as depicted in Figure 2, so the values are fixed to 1 to 
ensure uniformity in the initial value of depression status at each time point for 
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everyone. Due to this characteristic, the factor loadings of the intercept factor 
are not required to be determined or estimated. 

Secondly, the number of slope factors is determined by the theories or 
assumptions, so it can be greater than 1, especially when modeling polynomial 
trajectories. Typically, researchers begin by investigating the trajectory in a 
linear form, so the model will contain only one intercept factor and one slope 
factor. However, this changes in a non-linear setting. For instance, if the change 
is assumed to be quadratic, there will be two slope factors to capture the 
trend: one representing the linear form and the other represents the quadratic 
form. Overall, the number of pairs of factor loadings is deeply affected by the 
assumptions from the researchers, which also suggests that theories are essential 
for determining factor loadings (Preacher, 2008).  

The other step in determining factor loadings is to confirm the values of the 
factor loadings, contingent upon four critical aspects: the time point of most 
interest, the direction of the trend, mathematical form, and data collection. 

First, the time point of most interest is crucial as the chosen loadings can 
highlight specific periods within the growth trajectory, such as the baseline 
status or significant developmental phases that are theoretically or practically 
important. For instance, in clinical studies, the onset of treatment is often 
a significant phase, and tracking changes from this baseline can inform the 
efficacy of therapeutic interventions. Consider a set of factor loadings, where Tj 

= {t1, t2, t3, t4}, as shown in Figure 2. In general, Tj will be assigned as {0,1,2,3} 
to express a linear form, emphasizing the baseline status at the first time point (i.e. 
t1=0 at time 1) with a positive growth trend. If a study is interested in the last 
time point, Tj can be assigned as {-3,-2,-1,0} to maintain the trend and rescale 
the baseline status to t4.

Second, regarding trend direction, whether positive or negative, it can 
be altered by changing the signs of factor loadings. For example, in the set 
of factor loadings, Tj = {0,1,2,3}, which shows a positive trend, it can be 
switched to a negative direction that Tj = {0,-1,-2,-3}. It should be noted that 
the first two aspects will not impact the fit of the model. However, it is crucial 
to acknowledge that transforming Λy bears significant implications for the 
interpretation of parameters (Mehta & West, 2000). 

Third, as previously discussed, the mathematical assumption not only affects 
the decision on the number of slope factors but also restricts the choice of 
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the values in factor loadings. In particular, the factor loadings of higher-order 
polynomials are often determined by the linear factor loadings in the polynomial 
setting. Consider an LGCM with both linear and quadratic slope factors, where 
the linear factor loadings Tj are {0,1,2,3}. In this situation, the set of quadratic 
factor loadings is calculated by taking the square of the linear factor loadings, 
resulting is {0,1,4,9}. Researchers do not need to specify new factor loadings for 
the quadratic term. Additionally, researchers can utilize orthogonal polynomials 
to minimize the covariance among latent growth factors (Newsom, 2015).

Lastly, the aspect regarding data collection of the repeated measures is 
crucial. Generally, the response variables are collected at evenly spaced time 
points, with linear factor loadings such as {0,1,2,3} assigned to them. This 
assumes that the response variable changes uniformly over time. Nevertheless, 
if the data were gathered at irregular intervals, these linear factor loadings would 
result in non-linear changes. The solution for the violation of uniform change is 
to adjust the linear factor loadings based on irregular time points. For instance, if 
longitudinal data were collected in 2000, 2001, 2004, and 2010, the linear slope 
factor loadings can be set to {0,1,4,10}, which affirms the uniformity of annual 
change. 

Following the discussion on the steps of determining appropriate factor 
loadings in LGCM for researchers, it should be noted that a more data-driven 
method exists for deciding the loadings by freely estimating the parameters 
(Meredith & Tisak, 1990). This method is called the “unspecified trajectory 
model.” One of the primary benefits of the unspecified trajectory model is its 
ability to adapt to various growth patterns without the constraints of predefined 
functional forms (Bollen & Curran, 2006; Meredith & Tisak, 1990; Newsom, 
2015; Stoolmiller, 1995). This adaptability makes it suitable for analyzing 
longitudinal data where the growth trajectories are expected to be complex or 
non-linear. By allowing the data to dictate the trajectory's shape, this model can 
highlight significant developmental phases and other critical periods, offering 
richer insights into the processes under study. 

The unspecified trajectory can be implemented by only fixing t1 and t2 
to predetermined values, 0 and 1, respectively. The other factor loadings are 
estimated by the following equation:

Lastly, the aspect regarding data collection of the repeated measures is crucial. Generally, 
the response variables are collected at evenly spaced time points, with linear factor loadings such 
as ሼ0,1,2,3ሽ assigned to them. This assumes that the response variable changes uniformly over 
time. Nevertheless, if the data were gathered at irregular intervals, these linear factor loadings 
would result in non-linear changes. The solution for the violation of uniform change is to adjust 
the linear factor loadings based on irregular time points. For instance, if longitudinal data were 
collected in 2000, 2001, 2004, and 2010, the linear slope factor loadings can be set to ሼ0,1,4,10ሽ, 
which affirms the uniformity of annual change.  

Following the discussion on the steps of determining appropriate factor loadings in LGCM 
for researchers, it should be noted that a more data-driven method exists for deciding the loadings 
by freely estimating the parameters (Meredith & Tisak, 1990). This method is called the 
“unspecified trajectory model.” One of the primary benefits of the unspecified trajectory model is 
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(Bollen & Curran, 2006; Meredith & Tisak, 1990; Newsom, 2015; Stoolmiller, 1995). This 
adaptability makes it suitable for analyzing longitudinal data where the growth trajectories are 
expected to be complex or non-linear. By allowing the data to dictate the trajectory's shape, this 
model can highlight significant developmental phases and other critical periods, offering richer 
insights into the processes under study.  

The unspecified trajectory can be implemented by only fixing 𝑡𝑡1 and 𝑡𝑡2 to predetermined 
values, 0 and 1, respectively. The other factor loadings are estimated by the following equation: 

𝑡𝑡𝑗𝑗 =
𝑦𝑦¯ 𝑗𝑗 − 𝑦𝑦¯ 1
𝑦𝑦¯ 2 − 𝑦𝑦¯ 1

 

where 𝑦𝑦¯  represents the observed mean of the repeated measure at the corresponding time point 
denoted by the subscript. The estimated loading uses the change at the second time point as the 
reference to assess the difference between the specific time point and the initial value, indicating 
that the factor loadings act as multipliers of the change between time 1 and time 2. In fact, this 
approach stretches the unit of time and allows for linearizing the relationship between time and 
the response variables. McArdle (1988) extends this application by fixing 𝑡𝑡1 and 𝑡𝑡2 to 0 and 1. 
This adjustment allows the estimated loadings to accurately depict the average change in relation 
to the overall differential (McArdle, 1988). 

While the unspecified trajectory model offers significant advantages, its application requires 
careful attention to several practical considerations to ensure reliable and valid results. One of the 
primary challenges is the need for an adequate sample size. Because the model involves estimating 
a larger number of parameters, larger sample sizes are essential for model identification to achieve 
stable and reliable estimates (Bollen & Curran, 2006; Hancock et al., 2010; Newsom, 2015). An 
insufficient sample size can lead to convergence issues and unreliable parameter estimates, 
undermining the model's validity. Additionally, researchers must monitor model convergence 
closely. Non-convergence or improper solutions, such as negative variances, can indicate issues 
with model specification or data inadequacies. Conducting robustness checks and sensitivity 
analyses is recommended to ensure that the results are not overly dependent on a particular 
specification and that the model is robust across different configurations (Hancock et al., 2010). 

Lastly, the aspect regarding data collection of the repeated measures is crucial. Generally, 
the response variables are collected at evenly spaced time points, with linear factor loadings such 
as ሼ0,1,2,3ሽ assigned to them. This assumes that the response variable changes uniformly over 
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would result in non-linear changes. The solution for the violation of uniform change is to adjust 
the linear factor loadings based on irregular time points. For instance, if longitudinal data were 
collected in 2000, 2001, 2004, and 2010, the linear slope factor loadings can be set to ሼ0,1,4,10ሽ, 
which affirms the uniformity of annual change.  

Following the discussion on the steps of determining appropriate factor loadings in LGCM 
for researchers, it should be noted that a more data-driven method exists for deciding the loadings 
by freely estimating the parameters (Meredith & Tisak, 1990). This method is called the 
“unspecified trajectory model.” One of the primary benefits of the unspecified trajectory model is 
its ability to adapt to various growth patterns without the constraints of predefined functional forms 
(Bollen & Curran, 2006; Meredith & Tisak, 1990; Newsom, 2015; Stoolmiller, 1995). This 
adaptability makes it suitable for analyzing longitudinal data where the growth trajectories are 
expected to be complex or non-linear. By allowing the data to dictate the trajectory's shape, this 
model can highlight significant developmental phases and other critical periods, offering richer 
insights into the processes under study.  

The unspecified trajectory can be implemented by only fixing 𝑡𝑡1 and 𝑡𝑡2 to predetermined 
values, 0 and 1, respectively. The other factor loadings are estimated by the following equation: 

𝑡𝑡𝑗𝑗 =
𝑦𝑦¯ 𝑗𝑗 − 𝑦𝑦¯ 1
𝑦𝑦¯ 2 − 𝑦𝑦¯ 1

 

where 𝑦𝑦¯  represents the observed mean of the repeated measure at the corresponding time point 
denoted by the subscript. The estimated loading uses the change at the second time point as the 
reference to assess the difference between the specific time point and the initial value, indicating 
that the factor loadings act as multipliers of the change between time 1 and time 2. In fact, this 
approach stretches the unit of time and allows for linearizing the relationship between time and 
the response variables. McArdle (1988) extends this application by fixing 𝑡𝑡1 and 𝑡𝑡2 to 0 and 1. 
This adjustment allows the estimated loadings to accurately depict the average change in relation 
to the overall differential (McArdle, 1988). 

While the unspecified trajectory model offers significant advantages, its application requires 
careful attention to several practical considerations to ensure reliable and valid results. One of the 
primary challenges is the need for an adequate sample size. Because the model involves estimating 
a larger number of parameters, larger sample sizes are essential for model identification to achieve 
stable and reliable estimates (Bollen & Curran, 2006; Hancock et al., 2010; Newsom, 2015). An 
insufficient sample size can lead to convergence issues and unreliable parameter estimates, 
undermining the model's validity. Additionally, researchers must monitor model convergence 
closely. Non-convergence or improper solutions, such as negative variances, can indicate issues 
with model specification or data inadequacies. Conducting robustness checks and sensitivity 
analyses is recommended to ensure that the results are not overly dependent on a particular 
specification and that the model is robust across different configurations (Hancock et al., 2010). 
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where ȳ represents the observed mean of the repeated measure at the 
corresponding time point denoted by the subscript. The estimated loading uses 
the change at the second time point as the reference to assess the difference 
between the specific time point and the initial value, indicating that the factor 
loadings act as multipliers of the change between time 1 and time 2. In fact, this 
approach stretches the unit of time and allows for linearizing the relationship 
between time and the response variables. McArdle (1988) extends this 
application by fixing t1 and t2 to 0 and 1. This adjustment allows the estimated 
loadings to accurately depict the average change in relation to the overall 
differential (McArdle, 1988).

While the unspecified trajectory model offers significant advantages, its 
application requires careful attention to several practical considerations to ensure 
reliable and valid results. One of the primary challenges is the need for an 
adequate sample size. Because the model involves estimating a larger number of 
parameters, larger sample sizes are essential for model identification to achieve 
stable and reliable estimates (Bollen & Curran, 2006; Hancock et al., 2010; 
Newsom, 2015). An insufficient sample size can lead to convergence issues and 
unreliable parameter estimates, undermining the model's validity. Additionally, 
researchers must monitor model convergence closely. Non-convergence or 
improper solutions, such as negative variances, can indicate issues with model 
specification or data inadequacies. Conducting robustness checks and sensitivity 
analyses is recommended to ensure that the results are not overly dependent 
on a particular specification and that the model is robust across different 
configurations (Hancock et al., 2010).

Another critical aspect is the interpretation of parameters. In unspecified 
trajectory models, the factor loadings are freely estimated, which can complicate 
the interpretation of intercepts and slopes compared to models with specified 
trajectories. This is particularly true for the completely latent trajectory model, 
which contains only one intercept factor and one slope factor. In this model, 
the estimated slope factor is presumed to represent both linear and nonlinear 
change, making it difficult to distinguish between these two trends with a 
single factor (Stoolmiller, 1995). Any interpretation of this slope factor could 
be ambiguous before eliminating the linear effect (Hancock et al., 2010). 
Another significant issue with interpretation is the overfitting of the data, where 
stochastic fluctuations could influence the shape of the function and lead to 
spurious findings. Researchers may perceive the estimated factor loadings as 
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random numbers or a nonlinear trajectory, while, in fact, they could be simply 
explained by a linear trend. This is because the mean value of the slope factor 
will remain significant even when only a linear trend is observed (Newsom, 
2015). A strategic approach to mitigate these issues involves systematically 
ruling out the linear effect within the slope factor (Newsom, 2015). This 
process entails incorporating a linear factor into the analysis and conducting a 
significance test to ascertain whether the original factor yields any additional 
insights beyond those provided by a linear trend. The test for evaluation can 
be conducted by the Wald ratio test of mean values of the original slope factor 
or by employing a likelihood ratio test to compare models—with and without 
the latent basic factor—while including a linear slope. Additional details about 
model comparison will be discussed in the next section.

Model fit and comparison

Assessing the fit of an LGCM involves using various statistical indices 
to gain a comprehensive understanding of how well the model represents the 
observed data. One of the measures is the Chi-Square Test of Model Fit, which 
compares the observed covariance matrix with the model-implied covariance 
matrix. A non-significant chi-square value (p-value > 0.05) suggests a good fit, 
indicating minimal differences between the observed and expected matrices. 
However, this test is highly sensitive to sample size; in large samples, even 
minor deviations can result in significant chi-square values, which may not 
necessarily imply poor model fit. Consequently, in recent years, chi-square 
values have not been the main metric for evaluation in practice (Lei & Lomax, 
2005). 

Another important index is the Root Mean Square Error of Approximation 
(RMSEA), which evaluates the goodness of fit per degree of freedom, 
considering model complexity (Steiger, 1980). RMSEA values below 0.05 
indicate a close fit, while values up to 0.08 are considered reasonable (Browne & 
Cudeck, 1992). RMSEA adjusts for the sample-size effect, making it a preferred 
measure for complex models. It also provides a confidence interval, offering 
a range within which the true RMSEA value is expected to lie, adding to its 
robustness. 

Additionally, the Comparative Fit Index (CFI), Incremental Fit Index (IFI), 
and Tucker-Lewis Index (TLI) compare the fit of the specified model to a null 
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model (Bentler, 1990; Bollen, 1989; Tucker & Lewis, 1973). CFI and IFI values 
above 0.90 or 0.95 indicate a good fit. TLI values close to 1 are ideal, while 
values lower than 0.9 are considered inadequate. TLI values greater than 1.2 
suggest an overfitting problem. Unlike the chi-square test, CFI and TLI are less 
sensitive to sample size, providing a more stable assessment of model fit. The 
Standardized Root Mean Square Residual (SRMR) measures the difference 
between observed and predicted correlations, with values below 0.08 typically 
indicating a good fit. However, SRMR is not sensitive to misfitted mean 
structures and has relatively insufficient power to identify incorrect functional 
forms with few time points (Yu, 2002). 

Overall, there is no single standard for evaluating an LGCM, and these 
indices could be inconsistent in some situations. If discrepancies occur, 
researchers should consider alternative assumptions and models (Felt et al., 
2017). The evaluation of the model should not be done in isolation but as 
part of a comprehensive process that includes comparing alternative models, 
considering theoretical plausibility, and examining parameter estimates for 
practical significance (Hancock et al., 2010; Newsom, 2015). This approach 
helps ensure that the chosen model not only fits the data well statistically but also 
makes meaningful and theoretically sound contributions to the understanding of 
the phenomena under study.

There are two different techniques for comparing different LGCMs: 
information-based metrics and the significance test. The Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) are commonly used 
metrics that assess model fit while penalizing for the number of parameters, thus 
discouraging overfitting (Akaike, 1987; Schwarz, 1978). Lower AIC and BIC 
values indicate a better model, with BIC imposing a larger penalty for model 
complexity compared to AIC, making it more conservative. The Likelihood 
Ratio Test, also known as the “chi-square difference test,” is another essential 
method for comparing models (Chen et al., 2001). This test compares the fit of 
two nested models by evaluating whether the addition of parameters significantly 
improves fit. A significant result indicates that the more complex model fits the 
data significantly better than the simpler model, justifying the inclusion of the 
additional parameters. Through this comparison, researchers can determine if 
the more complex model offers substantial advantages.
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Covariates 

As discussed in the previous section, when an unconditional model, or 
baseline model, has been confirmed, a more complex model with one or more 
predictors can be examined with reference to the baseline growth. Predictors, 
or covariates, in LGCM can broadly be categorized into two types: Time-
Invariant Covariates (TICs) and Time-Varying Covariates (TVCs). TICs, as 
the name suggests, remain constant across time points and typically capture 
individual differences that persist over the duration of the study. These could 
include demographic variables like gender, socioeconomic status, or cultural 
background, as well as stable personality traits or genetic factors. On the 
other hand, TVCs are variables that may fluctuate over time, influencing the 
trajectory of growth at each measurement occasion. These could encompass 
situational factors such as stress levels, environmental conditions, or treatment 
interventions. 

Incorporating covariates into LGCM enables researchers to test hypotheses 
about the underlying mechanisms driving change. TICs, for example, directly 
predict individual differences in initial status (intercept) and rates of change 
(slope) by identifying which characteristics are associated with higher or lower 
starting points and steeper or flatter slopes over time. TVCs, on the other hand, 
offer insight into the dynamic interplay between time-varying factors and 
growth processes. There are two major ways to incorporate TVCs in LGCM: 
the traditional approach and multivariate latent growth. Each method provides a 
different interpretation for the corresponding research questions. The traditional 
approach involves predicting the response variable as a distinctive predictor in 
the model expression, while the effect of TVCs is the prediction of the response 
variable after controlling the influence of underlying growth trajectories (Bollen 
& Curran, 2006). Instead, the multivariate approach considers the trajectories of 
TVCs as the predictor while answering the question of how the trajectory of one 
variable can influence the trajectory of the other one (Duncan et al., 1998). 

Extensions

LGCM provides a flexible framework that allows researchers to address a 
wide range of research questions through the development of various extensions. 
In this section, we will introduce two specific extensions: the piecewise model 
and the growth mixture model. These models are designed to investigate 
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multiple trajectories, with the former focusing on within-individual trajectories 
and the latter on between-individual trajectories. 

A piecewise latent growth curve model is a statistical approach that divides 
the overall time span into segments, with each segment having its own growth 
parameters. This method is particularly useful when the data indicates that 
the rate of change is not constant throughout the entire observation period, 
but instead varies at specific points. These points, referred to as "knots" or 
"breakpoints," mark where the trajectory changes direction or slope and can be 
determined by either pre-specified criteria or data-driven methods (Harring et al., 
2021). Identifying and placing these knots allows the piecewise model to more 
accurately capture complex growth patterns that a single continuous trajectory 
might miss. This approach is advantageous in scenarios where distinct phases of 
growth or decline are evident (Chou et al., 2004). For example, in educational 
research, a student's learning curve might experience rapid acceleration in 
the initial stages, slow down during the middle phase, and then pick up again 
towards the end.

A Growth Mixture Model extends the traditional LGCM by incorporating 
latent classes, or subgroups, within the population (Berlin et al., 2014; Ram & 
Grimm, 2009). While traditional LGCMs assume that all individuals in a sample 
follow a single trajectory with common growth parameters, this assumption 
may not hold true in heterogeneous populations. Growth Mixture Models 
(GMMs) address this limitation by allowing for the identification of distinct 
subgroups within the population, each with its own unique growth trajectory. 
The model simultaneously estimates the parameters for the growth trajectories 
within each class and the probabilities of class membership for each individual. 
This dual focus enables researchers to identify distinct growth patterns and to 
classify individuals based on their developmental trajectories. This approach 
provides a more nuanced understanding of developmental processes and can 
reveal underlying patterns that are not apparent when assuming a homogeneous 
population. For instance, reading proficiency development is a critical aspect 
of early education, with substantial variability among students. Some students 
may start with high proficiency and continue to improve steadily, while others 
may struggle initially but show significant improvement later. Identifying these 
subgroups and understanding their unique trajectories can help educators design 
targeted interventions.

In summation, the piecewise model captures changes within individual 
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trajectories by segmenting the time span into phases with distinct growth 
parameters, while the growth mixture model identifies distinct subgroups with 
unique growth patterns in heterogeneous populations. These two extensions can 
be combined to explore more complicated trajectories (Kohli et al., 2013). These 
approaches enhance our understanding of developmental processes and inform 
targeted interventions by revealing nuanced growth trajectories that single 
continuous models might miss.

Conclusion
Latent Growth Curve Modeling (LGCM) has emerged as a powerful 

and flexible statistical technique for analyzing longitudinal panel data. By 
incorporating latent variables that represent individual growth trajectories over 
time, LGCM enables researchers to model both the initial status and the rate of 
change, while accounting for individual variability in these trajectories. With the 
increasing availability of longitudinal panel datasets, LGCM presents a valuable 
opportunity for researchers across various disciplines to explore individual 
change within the broader context of macrostructural dynamics.

The key strengths of LGCM lie in its ability to capture heterogeneity in 
growth processes, accommodate complex causal relationships, and incorporate 
covariates that influence these developmental pathways. As with any statistical 
technique, the application of LGCM requires careful consideration of data 
requirements, model assumptions, and interpretation of results. However, by 
successfully integrating its theoretical foundations, LGCM offers a robust 
framework for advancing our understanding of complex developmental 
processes. Furthermore, LGCM offers significant advantages over traditional 
analytical approaches by treating individual variability as a critical component 
of the model rather than merely an error term. By leveraging the flexibility 
of LGCM and its extensions, such as piecewise models and growth mixture 
models, researchers can gain nuanced insights into the factors shaping human 
behavior and development over the lifespan.

The study “Developmental Trajectory of Depressive Symptoms from 
Adolescence to Early Adulthood,” effectively utilized LGCM to analyze 
the trend of depression among Taiwanese adolescents. The author identified 
three key stages – freshman year of high school, senior year of high school, 
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and sophomore year of college – by including a slope factor with unspecified 
loadings. The study provides valuable insights into the role of parent-child 
relationships and self-esteem in shaping the mental health trajectories of 
adolescents in Taiwan, enhancing the potential for developing effective 
preventive strategies and interventions. 

Further studies can explore and justify the stage theory among Taiwanese 
adolescents by applying a piecewise model or a mixture model, allowing 
researchers to investigate the mechanisms of transitions and differentiate the 
effect. Essential questions include whether the trajectories in each stage remain 
linear or whether individuals share the same transition pattern. Additionally, 
scholars may explore the impacts of transitioning between parenting styles or 
modifying self-esteem levels on the progression of depressive disorders through 
the application of the multivariate latent growth model.

For those seeking to expand their understanding of LGCM, numerous 
researchers have produced helpful tutorials and discussions on the mathematical 
theories (Berlin et al., 2014; Bollen & Curran, 2006; Curran, 2000; Curran & 
Bauer, 2011; Duncan & Duncan, 2004; Hedeker & Gibbons, 2006; Newsom, 
2015; Preacher, 2008; Singer & Willett, 2003), as well as the software (Klopack 
& Wickrama, 2020; Mirman, 2017; Rabe-Hesketh & Skrondal, 2008). Several 
statistical software options are available for LGCM, including Stata, R, and 
Mplus. It is important to note that LGCM is not always a built-in function in 
these software programs. For example, in R, users must install the "lavaan" 
package for SEM and LGCM (Rosseel, 2012). Overall, Latent Growth Curve 
Modeling represents a valuable addition to the methodological toolkit for 
longitudinal research, enabling researchers to delve deeper into the intricate 
patterns of change that characterize human behavior and experience across 
various domains.
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